Relasi ekuivalensi

52 relasi ekuivalensi pada himpunan 5-anggota yang digambarkan dengan matriks biner 5x5 (kotak yang berwarna, termasuk yang abu-abu, melambangkan 1; kotak putih melambangkan 0.) Indeks kolom dan baris dari kotak yang berwarna adalah anggota yang berkaitan, sementara warna yang dibedakan, selain abu-abu, mengindikasikan kelas ekuivalensi (masing-masing kotak abu-abu merupakan kelas ekuivalensinya sendiri).

Dalam matematika, relasi ekuivalensi adalah relasi biner yang bersifat reflektif, simetris dan transitif. Relasi "sama dengan" merupakan contoh dasar dari relasi ekuivalensi, di mana untuk sembarang objek a, b, dan c:

  • a = a (sifat reflektif),
  • jika a = b maka b = a (sifat simetris), dan
  • jika a = b dan b = c maka a = c (sifat transitif).

Sebagai akibat dari sifat reflektif, simetris, dan transitif, semua relasi ekuivalensi dapat menghasilkan partisi dari himpunan pendasar menjadi kelas-kelas ekuivalensi yang saling lepas. Dua anggota dari suatu himpunan disebut ekuivalen jika dan hanya jika mereka merupakan anggota kelas ekuivalensi yang sama.

Notasi

Berbagai notasi digunakan untuk menunjukkan bahwa dua anggota himpunan a dan b bersifat ekuivalen terhadap relasi ekuivalen R; biasanya "a ~ b" dan "ab", yang digunakan ketika R bersifat tersirat, dan variasi "a ~R b", "aR b", atau "aRb" untuk menyebutkan R secara tersurat. Sifat tidak ekuivalen bisa ditulis "ab" atau " a b {\displaystyle a\not \equiv b} ".

Definisi

Suatu relasi biner ~ pada himpunan X disebut merupakan relasi ekuivalensi jika dan hanya jika bersifat reflektif, simetris dan transitif. Artinya, untuk semua a, b dan c dalam X:

  • a ~ a. (Reflektivitas)
  • a ~ b jika dan hanya jika b ~ a. (Simetri)
  • jika a ~ b dan b ~ c maka a ~ c. (Transitivitas)

X bersama dengan relasi ~ disebut sebuah setoid. Kelas ekuivalensi dari a {\displaystyle a} di bawah ~, dilambangkan dengan [ a ] {\displaystyle [a]} , didefinisikan sebagai [ a ] = { b X a b } {\displaystyle [a]=\{b\in X\mid a\sim b\}} .

Contoh

Contoh sederhana

Anggap himpunan { a , b , c } {\displaystyle \{a,\,b,\,c\}} memiliki relasi ekuivalensi { ( a , a ) , ( b , b ) , ( c , c ) , ( b , c ) , ( c , b ) } {\displaystyle \{(a,a),\,(b,b),\,(c,c),\,(b,c),\,(c,b)\}} . Himpunan [ a ] = { a } {\displaystyle [a]=\{a\}} dan [ b ] = [ c ] = { b , c } {\displaystyle [b]=[c]=\{b,c\}} adalah kelas ekuivalensi dari relasi ini.

Himpunan dari semua kelas ekuivalensi untuk relasi ini adalah { { a } , { b , c } } {\displaystyle \{\{a\},\,\{b,\,c\}\}} . Himpunan ini adalah partisi dari himpunan { a , b , c } {\displaystyle \{a,\,b,\,c\}} .

Relasi ekuivalensi

Relasi-relasi berikut adalah contoh lain dari relasi ekuivalensi:

  • "sama dengan" pada himpunan bilangan. Sebagai contoh, 1 2 {\displaystyle {\tfrac {1}{2}}} sama dengan 4 8 {\displaystyle {\tfrac {4}{8}}} .[1]
  • "memiliki tanggal ulang tahun yang sama dengan" pada himpunan orang-orang.
  • "kongruen dengan" pada himpunan semua segitiga.
  • "kongruen modulo n dengan" pada bilangan bulat.[1]
  • "Memiliki nilai mutlak yang sama dengan" pada himpunan bilangan real.
  • "Memiliki nilai kosinus yang sama dengan" pada himpunan semua sudut.

Relasi yang bukan ekuivalensi

  • Relasi "≥" antara dua bilangan real bersifat reflektif dan transitif, namun tidak simetris. Sebagai contoh, 7 ≥ 5 tidak mengakibatkan 5 ≥ 7.
  • Relasi "memiliki faktor pembagi bersama yang lebih besar dari 1 dengan" antara dua bilangan bulat yang lebih besar dari 1, bersifat reflektif dan simetris, namun tidak transitif. Sebagai contoh, bilangan 2 dan 6 sama-sama memiliki faktor bersama yang lebih besar dari 1 (yakni angka 2), bilangan 6 dan 3 juga memiliki bersama yang lebih besar dari 1 (yakni angka 3), tetapi 2 dan 3 tidak memiliki faktor bersama yang lebih besar dari 1.

Kelas ekuivalensi, himpunan hasil bagi, dan partisi

Anggap a , b X {\displaystyle a,\,b\in X} . Ada beberapa definisi

Kelas ekuivalensi

Sebuah subhimpunan Y {\displaystyle Y} dari X {\displaystyle X} , dengan a b {\displaystyle a\sim b} tetap berlaku untuk semua a , b Y {\displaystyle a,\,b\in Y} namun tidak pernah ketika a Y     dan     b Y {\displaystyle a\in Y\ \ {\text{dan}}\ \ b\notin Y} , disebut sebagai sebuah kelas ekuivalensi {\displaystyle \sim } dari X {\displaystyle X} . Anggap [ a ] := { x X | a x } {\displaystyle [a]:=\{x\in X\,|\,a\sim x\}} menyatakan kelas ekuivalensi yang berisi elemen a {\displaystyle a} . Semua elemen di X {\displaystyle X} yang saling ekuivalen menjadi anggota pada kelas ekuivalensi yang sama.

Himpunan hasil bagi

Himpunan semua kelas ekuivalensi {\displaystyle \sim } dari X {\displaystyle X} , yang dinyatakan sebagai X / := { [ x ] x X } {\displaystyle X/{\mathord {\sim }}:=\{[x]\mid x\in X\}} , adalah himpunan hasil bagi {\displaystyle \sim } dari X {\displaystyle X} . Jika X {\displaystyle X} adalah ruang topologis, ada cara mudah mengubah X / {\displaystyle X/{\mathord {\sim }}} menjadi ruang topologis. Lihat ruang hasil bagi untuk detailnya.

Teorema dasar relasi ekuivalensi

Salah satu hasil penting yang menghubungkan relasi ekuivalensi dan partisi adalah:[2][3][4]

  • Relasi ekuivalensi {\displaystyle \sim } pada himpunan X {\displaystyle X} mempartisi himpunan X {\displaystyle X} tersebut.
  • Kebalikannya, untuk setiap partisi himpunan X {\displaystyle X} , terdapat suatu relasi ekuivalensi {\displaystyle \sim } yang sesuai pada himpunan X {\displaystyle X} .

Anggap Y {\displaystyle Y} sebagai partisi dari X {\displaystyle X} . Pada kedua kasus, sebuah himpunan di Y {\displaystyle Y} adalah kelas ekuivalensi {\displaystyle \sim } dari X {\displaystyle X} . Karena setiap elemen di X {\displaystyle X} terletak di tepat satu himpunan di Y {\displaystyle Y} , dan karena setiap himpunan di Y {\displaystyle Y} identik ke kelas ekuivalensi {\displaystyle \sim } dari X {\displaystyle X} , maka setiap elemen di X {\displaystyle X} terletak di tepat satu kelas ekuivalensi {\displaystyle \sim } dari X {\displaystyle X} . Dengan demikian, terdapat bijeksi antara himpunan semua relasi ekuivalensi di X {\displaystyle X} dengan himpunan semua partisi dari X {\displaystyle X} .

Referensi

  1. ^ a b "7.3: Equivalence Classes". Mathematics LibreTexts (dalam bahasa Inggris). 2017-09-20. Diakses tanggal 2021-02-10. 
  2. ^ Wallace, D. A. R. (1998). Groups, Rings and Fields. Springer-Verlag. hlm. 31.  Parameter |url-status= yang tidak diketahui akan diabaikan (bantuan)
  3. ^ Dummit, D. S.; Foote, R. M. (2004). Abstract Algebra (edisi ke-3). John Wiley & Sons. hlm. 3.  Parameter |url-status= yang tidak diketahui akan diabaikan (bantuan)
  4. ^ Hrbacek, Karell; Jech, Thomas (1999). Introduction to Set Theory (edisi ke-3). Marcel Dekker. hlm. 29-32.  Parameter |url-status= yang tidak diketahui akan diabaikan (bantuan)

Pranala luar


  • l
  • b
  • s